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Abstract. We consider similarity solutions of the ZND model for detonation waves. Assuming as boundary
condition the RH relations for the precursor shock, we obtain exact similarity solutions corresponding to
reaction rates compatible with the associated stretching group of transformations which leaves invariant the
governing system. The location of weak discontinuities across a similarity line and their evolution laws are
determined.

1. Introduction

In this paper we consider a binary reacting mixture produced by a plane shock wave (the
precursor shock) which occurs when an infinite piston, moving at constant velocity up, shocks
a polytropic reactant gas at rest. We assume at first the shock to be purely fluid-dynamic.
When the gas particles move across this shock the reaction begins [1]. Behind the precursor
shock, in the reacting shocked gas, the usual conservation laws must be supplemented by a
chemical reaction equation. The reaction propagates together with the shock at the same
detonation velocity D [2].

The governing equations, introduced in Section 2, are given by the ZND (Zel'dovic, von
Neumann, Doering) model [2, 3] that consists of the one-dimensional, adiabatic, inviscid-
fluid equations to which we must add the progress equation of the chemical reaction and the
constitutive relations for the internal energy and reaction rate. Moreover, after having
written the equations in Lagrangian coordinates, we carry out a similarity analysis according
to invariance-group methods [4, 5] used in [3]. In Section 3, by using the associated-group
concept [6], we consider the possibility to obtain exact solutions [7, 8] by assuming the RH
relations as boundary conditions. Finally, in Section 4, by following the procedure suggested
in [7], we determine the location of weak discontinuities of a similarity solution across a
similarity line in the x, t plane, as well as their evolution laws [9].

2. Governing equations and similarity analysis

In writing the governing equations, as is often convenient in computational work, we replace
the Eulerian coordinate x by a Lagrangian coordinate defined by
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where the quantities v, u, vo denote, respectively, the specific volume of mixture, the particle
velocity and the specific volume of reactant. Moreover, p will denote the pressure, and the
dimensionless quantity (mass fraction of product) is used as a progress variable for an
irreversible binary chemical reaction. It is assumed that both the reacting species satisfy the
polytropic gas equation of state with the same constant y. Denoting by e the internal energy
of the mixture and taking into account the well-known assumptions [1, 2] about the state
equations for reacting mixtures, we can write

pv
e- 1 q, (2.2)y-1

where q is the energy released per unit of mass in the chemical reaction.
As the flow is supposed to be adiabatic, by taking account of (2.2), the thermodynamic

relation

de = pdv, (2.3)

gives the following equation for the conservation of energy:

p, + YP v, - q, = 0. (2.4)

Moreover, the equation of reaction progress is given by

i, = Q(v, p, ) (2.5)

where Q is the reaction rate, whose value ahead of the shock is zero.
By coupling the usual equations for the conservation of mass and momentum with

equation (2.4), where we take into account (2.5), we obtain the following system:

Vt - VOUh = O, U + VoPh = 0,

(2.6)

YPv ( - )qP, + uh - Q,
v V

which may be written in the form

, U AahU = b, (2.7)

where

U = u , A = 0 , ° vO b = 0 (2.8)

P \0 ypvO/v 0 (y- l)qQ/v
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It may be easily verified that this system is hyperbolic and the characteristic equation is

det(A-AI) = A(A2 -YP ) = 0. (2.9)

The system (2.7) may be also written in conservative form,

0a, + ahF = 0, (2.10)

where

VT'= (v, u, e + u2), FT := (vou, Vop, voup). (2.11)

This form is more suitable in order to study shock-wave propagation. Of course, to the
system (2.7) we must associate the relation (2.5) which characterizes the time evolution of
the progress variable A.

The jump conditions which must hold across the shock front propagating into the reactant
are given by the well-known Rankine-Hugoniot relations obtained from (2.5) and (2.10). By
making the strong-shock assumption, the shock speed is given by

7+1
D = - u (2.12)

2

Moreover, taking into account that the precursor shock is purely fluid-dynamical, we obtain

, y + ( + 1) u2
- = -2 P = 2v u1, (2.13)

VO + 2 2v0

where the subscripts 0 and 1 refer, respectively, to quantities evaluated ahead and behind the
shock front. Because (2.12) and (2.13) are treated here like boundary conditions, we com-
plete them by adding the following condition for :

i, = 0. (2.14)

In order to find invariant solutions of (2.7) and (2.5), we require the system to be invariant
with respect to the infinitesimal transformations

t* = t + T, h* = h+ eH, u* = u + U,
(2.15)

p* = p + P, v* = v + V, * = + L,

where T, H, U, P, V, L are functions of t, h, u, p, v and ., to be determined in order to
characterize the possible groups of invariance. Of course, we also require the boundary
conditions (2.12), (2.13), (2.14) to be invariant with respect to (2.15).
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By using the results obtained in [3] we see that

T = at + d, H = bh + d,, U = (b - a)u,
(2.16)

P = 2(b-a)p, V = 0, L = 2(b-a)A,

where a, b, d, d, are constants, while the reaction rate must be a solution of the differential
equation

pQP + AQ = #fQ, (2.17)

where

2b - 3a
/ 2b-2a (2.18)

Consequently, we get the following functional form for Q:Consequently, we get the following functional form for Q:

Q = K(P) F(v p'), (2.19)

where K is a constant. F is an arbitrary function, and Pi, v, are the initial values of pressure
and volume of mixture. They are given from the jump conditions by

y-1 7-1
vi = vo, Pi = - I (2.20)

Y + 2 2%o

where ui denotes the initial particle velocity behind the shock.
In order to determine the similarity variable a and the similarity solutions, we use the

invariant-surface condition that allows us to obtain

c4h + 1
a- = (2.21)

(c3 t + 1)c2

and

u(t, h) = (c3 t + )-'uiu(a),

p(t, h) = (c3 t + 1)2(c2-')p)(a),

(2.22)
v(t, h) = vi(a),

A(t, h) = (c3 t + 1)2(c2-I) (f),
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where

b a b
C2 = -, C3 = a C4 = d (2.23)

and , , , are functions of a.

3. Associated group and particular solutions

By substitution of (2.22) and (2.21) in (2.6) and (2.5), taking into account (2.19), recalling
that the initial shock velocity is

y+l
Do = 2 u (3.1)

and taking the similarity variable as independent variable, we get the following system of
ordinary differential equations for 6, at, f:

2 c 4 -,3
ca C' + Do 0,

c2 "' + C4 (c-1), (3.2)
C3

2yD0 c2' 2KqgrF
27 c4 P ti' + C2 ef = 2(C2 2- 1 V) 2

y - 1 c3 6 V0 U C3

and the ordinary differential equation for i,

c 3e' = 2(c2 - 1) Kf (3.3)
C3

where, by (2.18) and (2.23),

2P - 3
c2 = 2 - 2 (3.4)

and the initial conditions at a = 1 are given by

i(1 ) = 6(1) = (l) = 1, L() = 0. (3.5)

We can show that system (3.2) and equation (3.3) are invariant with respect to the
following particular group:

a* = o), .6* = )c-26, V U* = rOc-ljI, 5* = cf, i* = r oci,

co eR - {0}, c R -{2}, (3.7)
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provided that F has the form

F = vcl('-)(c-2)( (3.8)

We must observe that the invariance condition requires that the following condition must
be satisfied

(c - 2)vF, = c(1 - )F. (3.9)

If c = 2, it follows by (3.9) that / = 1, vice versa, if / = 1, it follows that c = 2 or
F = YF(/fi). Following [6], we call (3.7) the associated stretching group of the group
generated by (2.19).

By introducing the new field variables

2', r Y (3.10)

and taking into account that

V' = z'a c- 2 + (c - 2)a-3z, L' = Wac- 1 + (C - 1)-2W,
(3.11)

if = r'a c + caf-lr, i' = y'o + cac-ly,

it follows from (3.2) and (3.3):

6c2 Z' + 2DOc 4 W' = C2(2 - c)z + 2D 4 (1 - c)w,
(Y - )c3 (Y- )c3

ac2w' - aDOc4 r' = c2(1 - c)z + Dc 4 cr + (c2 - l)w,
C3 C3 (3.12)

2yD0 c4 r + = 2yD0 c4 r2yDOc4 a r w + c2ar' = (c- 1)- w + {c2(2 - c)- 2}r
(Y - )C3 Z ( - 1)C 3 Z

2Kqrlzc(l-P)/(c- 2) (y)
and

c2ay' = {c2 (2 - c) 2} Kr -/(-2) (3.13)

Finally we observe that the system (3.12) can be written in the following matrix form:

di = B (3.14)
a(A + 21) = ' (3.14)da
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where

0O

A = 0

0

2D c 4

(y - 1)C3

0

2yD c4r

(Y - )C3 z

0

Doc4

C3

0

c2(2 - c)z + ° (1 -
(Y - )c3

;= {c 2(2 - c)}w + r c

( )c, (c _- 1) - w + {c2 (2 - c) - 2}r -
(Y - )C3 z

- C)W

r

2Kqr lzc(

Vo u2 c 3

The system (3.12) can be also written in the following normal form,

dz dw dr
a- = A, a- = A2 , A a- = A3

where

A:= det (A + c21) = 2 2y D2c

A,= BA - 2D0oc4 (2 +B4-)
(Y- 1 )c3 B3 c2 c3

A2 2 B3c2 + B4c4
c3 )

(=4~4+8. (Y - l)c3 -Z)

(3.16)

(3.17)

(3.18)

It is interesting to see that the system (3.12) and equation (3.13) may be reduced to
autonomous form simply by choosing as new independent variable

z = ln (.
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j! := W ,
r

I - 0)1(c - 2)

r�F (Y)

(3.19)
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Therefore, we obtain

c2z' + 2D w' = c2(2 - c)z + 2D (1 - c)w,
C3(y - 1) (Y - )c 3

C2 c4 r' = {c 2(2 -c) - l1}w + D cr,
C3 C3

2yD 0c 4 r - 2yD c 42 DoC4 r w + C2r= (C - 1)W (3.20)
(y - 1)c 3 Z (y - 1)C3 Z

+ C2(2 - ) - 2}r z 2 ) (
VoUi C3

c2y' = {c2(2 - c) - 2y - r
c3 ' Yr

while the initial conditions become

z(0) = 1, r(O) = 1, w(O) = 1, y(O) = 0. (3.21)

Now basing ourselves on the procedure used in [8], we look for a particular solution of
the Cauchy problem characterized by (3.20) and (3.21) in the form

z = w = r = 1, y = y(r). (3.22)

This implies that

c 2 (2 - c) + (1 - c) = 0,
(Y - )C3

C2(2 - c)+ c = 1,
C3

2yDoc4(C- 1) (2-C)- 2 2(3.23)
(Y - 2)c3 VOUC 3

K
c2y' = {c 2 (2 - c) - 2}y-

C3

where

=..= (Y) = const, (3.24)

as follows from (3.20.III), taking into account (3.21).
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From (3.23.IV) we obtain:

y = { 2 2 [ - exp c2(c -2) - 2 . (3.25)
C3{t C2 (C - 2)- 2 C2

The other three equations (3.23) allow us to determine the values of c, c3, c4. In fact, the
remaining quantities in the problem are assumed to be known either from the form of the
rate law (K, /3 and F), the physical characteristic of the reactive material (y and q), or the
initial piston energy (ui).

By assuming the constant c2 in suitable form,

C2 4 (13 29 - 9 y (3.26)C2 = 3y - 7 ( 2(11 - 3y)) (3.26)

it follows from (3.23, I, II, III) that:

= 3, 3 y- q(5) - 1u' c)q 2 (3.27)
(5y - 9)vOu (5y- 9)Dvou 2'

while (3.25) becomes

2vou(5y - 9)K F (3(3 - y) 'Ii
Y = 2t-u'2( )Y(3 _ 7) [I1 -exp I (3.28)

3(3 - 2y)( 3- - 7)q 2 

As expected, the above values are the only possible ones for c, c3 and c4.
Finally, we get a particular similarity solution of the form

(3y - gv 7)4--(y3r3- 3
u(t, h) = (3Y - 7)q-- t + 1) Uio 2

(3y - 7)q ) 3
p(t, h) = (5 - 9)Vo u 2 t + pi,

v(t, h) = via,

2vouiK(5y - 9) ( (3y - 7)q 3 32(3)ll2)/(3y7)3).(t, h) = 9)2 t + 1 a 3(1 - -)/2),
3(3 -- 2y)(3y 7)q (,y -

where

{(y - )qg/(5y - 9)Dovou 2 } h + 1

[- {(3y - 7)qg/(5y - 9)vou 2} t + 1]'4/ 3-7 )

247
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4. Weak discontinuities

We consider the case when a similarity solution suffers a jump in the first-order derivatives
of across the similarity curve characterized by the value af:

af(c3 t + 1)C2 - c4h = 1. (4.1)

This value ao is determined as a root of the characteristic polynomial associated with the
hyperbolic system (2.7). In fact, taking into account (2.21), we have

d = A CC3 (t + 1)Cla,
dt C4

for which we obtain from (2.9):

det (A - AI) = a-3A.

(4.2)

(4.3)

This relation confirms that the singularities will occur across the characteristic curves.
Because singularities will appear when

A(z(a), w(a), r(a), y(a)) = 0, (4.4)

then, if we know z(a), w(a), r(a), y(a), condition (4.4) determines the possible values of af.
In order that the solutions determined by (4.4) for values of a close to af be continued, we

require that A, A2 and A3 are also zero for a = a. Nevertheless, we can show that the
conditions

AI = 0, A2 = 0, A3 = 0 (4.5)

are not independent [7], so that we may consider the following system:

A = 0, A2 = 0, A3 = 0. (4.6)

Now fixing, for instance, in order to simplify the calculations:

C = 1, (4.6')

and assuming

f = 2, (c2 = ), 2 1 -r (4.7)
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we can write the vector B in the following form:

z

2

Dc 4 r (4.8)
C3 2

~3 _2Kqrz

Therefore, from (4.6), and taking into account (3.17), (3.18) and (4.8), we obtain

4y D2 c
Zf - -- 1 2 Y)*,

Dc4
w= X (Yf), (4.9)

C3

rf = -X(Yf)

where

X(Yf) := Yf - -- 3E > 0 (4.10)

with

y2 - 3E > 0 (4.11

and

(y- - )vu C
E = (4.12)

8KqD 0c2

Now we guess a value of af and a value yf such that yj > 3E and by using (4.9), we
calculate, ( yf), (yf), r(yf). These values zf, if, f, yf can be used to integrate the system
(3.12) and the equation (3.13), with assumptions (4.6'), from af inward to a = 1, yielding
f(l), (1), (), y(l).

Then, taking into account that from (3.5) and (3.10), with (4.6') and (4.7), we have

z(l) = w(l) = r(l) = 1, y(l) = 0, (4.13)

by using the invariance properties (3.7) and (3.10), we determine co from

(l) = row(l), (4.13')

* With ( ) we denote a function evaluated for a = of.
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so that the effective values of af and yf will be given by

t =w '5 ~ - Yf (4.14)

As is known [7],

(Af + c2 I)* = 0, (4.15)

so that

= rfdf, (4.16)

where df is the right eigenvector of Af corresponding to the eigenvalue A(af). Therefore, after
some classical developments, we get

((V A d)(1- d))faf7rf = (V (1 B)d)f, (4.17)

from which, taking into account that

Doc4 ( 2 r)1/2
A D= v v := + ( 1 _) , (4.18)

and that the corresponding left and right eigenvectors are

1 = (0, v, -1), d = ( v, -v2), (4.19)

it follows that

4D2= (c](y - l)v + cK(y + l)yqxf). (4.20)
(Y - _ 1)vcl3a s

Then the evolution law of discontinuities will be [9]

2viaf

-= 7f (C3t + 1)1/2UiVf . (4.21)

-- (c3 t + l)piVf
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